Multimodal Vision-Language Integration for AICO¶
Overview¶
AICO's multimodal capabilities enable visual understanding to enhance the companion AI experience through image analysis, document processing, and visual context awareness. The multimodal system operates as a separate inference service that provides structured visual context to the primary Nous Hermes 3 foundation model, maintaining AICO's privacy-first, modular architecture.
Primary Recommendation: Dual Model Strategy¶
Llama 3.2 Vision 11B (Primary)¶
Optimal for companion AI applications due to its balanced capabilities and ecosystem integration:
Companion AI Strengths¶
- Contextual Understanding: Excels at narrative descriptions and atmospheric interpretation
- Scene Comprehension: Strong ability to understand social contexts and emotional cues in images
- Drop-in Replacement: Seamless integration with existing Llama ecosystem
- Privacy-First Design: Built for edge deployment with local processing capabilities
Technical Capabilities¶
- Image Reasoning: Document-level understanding including charts and graphs
- Visual Grounding: Directional object identification based on natural language descriptions
- Scene Captioning: Contextual image descriptions that capture mood and atmosphere
- Visual Question Answering: Comprehensive understanding of visual scenes
Architecture Benefits¶
- Vision Adapter Design: Modular architecture with cross-attention layers
- Preserved Text Capabilities: Maintains full Llama 3.1 text abilities
- Local Deployment: Runs on 8GB+ VRAM with quantization
- Ecosystem Integration: Compatible with Ollama and existing AICO infrastructure
Qwen2.5-VL 7B (Specialized)¶
Optimal for precision tasks requiring detailed analysis and structured outputs:
Specialized Strengths¶
- Document Parsing: Superior OCR, handwriting, tables, charts, chemical formulas
- Object Grounding: Precise object detection, counting, and spatial reasoning
- Video Understanding: Ultra-long video analysis with temporal grounding
- Multilingual Excellence: Strong performance across multiple languages
Advanced Capabilities¶
- Omnidocument Processing: Multi-scene, multilingual document understanding
- Agent Functionality: Enhanced computer and mobile device control
- Dynamic Resolution: Temporal dimension processing for video understanding
- Structured Outputs: JSON format support for advanced spatial reasoning
Integration Architecture¶
Modular Adapter Approach (Recommended)¶
System Design¶
┌─────────────────┐
│ User Input │
│ (Image + Text) │
└─────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Message Bus (ZeroMQ) │
│ user/input/multimodal │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Multimodal Processing Service │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────┐ │
│ │ Image │ │ Vision │ │ Context │ │ Output │ │
│ │ Preprocessing│─▶│ Analysis │─▶│ Synthesis │─▶│ Routing │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ └─────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Message Bus (ZeroMQ) │
│ vision/analysis/complete, vision/context/emotional │
└─────────────────────────────────────────────────────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Nous Hermes 3 │ │ Emotion │ │ Avatar System │
│ (Conversation │ │ Simulation │ │ │
│ Engine) │ │ │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Message Bus Integration¶
Input Topics (Subscriptions):
- user/input/multimodal # Image + text input from user
- conversation/context/current # Current conversation state
- emotion/recognition/visual # Visual emotion detection requests
- avatar/scene/analysis # Scene understanding for avatar context
Output Topics (Publications):
- vision/analysis/complete # Structured visual analysis results
- vision/context/emotional # Emotional context from visual analysis
- vision/objects/detected # Object detection and spatial information
- vision/text/extracted # OCR and document parsing results
Binary Data Transport:
Images and large binary payloads are transported through the ZeroMQ message bus using Protocol Buffers' bytes
field type:
message MultimodalInput {
string text_query = 1;
bytes image_data = 2; // Base64 or raw binary image data
string image_format = 3; // "jpeg", "png", "webp"
MessageMetadata metadata = 4;
}
Large Payload Optimization: - Compression: Images compressed before transport (JPEG/WebP) - Chunking: Large files split into multiple messages if needed - Reference Pattern: For very large files, store locally and pass file paths - Memory Management: Images processed in streaming fashion to minimize RAM usage
Processing Pipeline¶
1. Image Preprocessing Component¶
class MultimodalProcessor:
def __init__(self, message_bus):
self.bus = message_bus
self.llama_vision = LlamaVisionModel() # Primary model
self.qwen_vision = QwenVisionModel() # Specialized tasks
# Subscribe to multimodal input
self.bus.subscribe("user.input.multimodal", self.on_multimodal_input)
def on_multimodal_input(self, message):
image_data = message['image']
text_query = message['text']
context = message.get('context', {})
# Route to appropriate model based on task type
if self.is_precision_task(text_query):
result = self.process_with_qwen(image_data, text_query)
else:
result = self.process_with_llama(image_data, text_query)
self.publish_analysis_results(result, context)
2. Vision Analysis Component¶
Llama 3.2 Vision Processing: - Scene Understanding: Contextual interpretation of visual scenes - Emotional Context: Mood and atmosphere detection from images - Social Context: Understanding of social situations and relationships - Narrative Description: Rich, contextual descriptions for companion interactions
Qwen2.5-VL Processing: - Document Analysis: OCR, form parsing, table extraction - Object Detection: Precise counting and spatial reasoning - Video Analysis: Temporal understanding and event detection - Structured Extraction: JSON format outputs for system integration
3. Context Synthesis Component¶
def synthesize_visual_context(self, vision_result, conversation_context):
# Combine visual analysis with conversation state
visual_context = {
"scene_description": vision_result.get('description'),
"emotional_indicators": self.extract_emotional_cues(vision_result),
"objects_present": vision_result.get('objects', []),
"social_context": self.analyze_social_elements(vision_result),
"document_content": vision_result.get('text_content'),
"spatial_relationships": vision_result.get('spatial_info')
}
# Publish to emotion simulation and conversation engine
self.bus.publish("vision.context.emotional", {
"emotional_indicators": visual_context["emotional_indicators"],
"social_context": visual_context["social_context"]
})
self.bus.publish("vision.analysis.complete", visual_context)
AICO-Specific Integration¶
Emotion Recognition Enhancement¶
Visual emotion detection augments AICO's emotion recognition capabilities:
Facial Expression Analysis¶
- Micro-expressions: Subtle emotional state detection
- Emotional Congruence: Validation of verbal vs. visual emotional signals
- Context Awareness: Environmental factors affecting emotional expression
- Temporal Tracking: Emotional state changes over conversation duration
Environmental Emotion Cues¶
- Scene Mood: Lighting, color, and spatial arrangement emotional impact
- Social Dynamics: Group interactions and relationship indicators
- Activity Context: Emotional implications of visible activities
- Personal Space: Privacy and comfort level indicators
Social Relationship Modeling Enhancement¶
Visual analysis provides rich context for relationship understanding:
Social Context Detection¶
- Group Dynamics: Multi-person interaction patterns
- Authority Indicators: Visual cues about social hierarchies
- Intimacy Levels: Physical proximity and interaction styles
- Cultural Context: Environmental and cultural relationship indicators
Relationship Vector Enhancement¶
Visual data augments the 6-dimensional relationship vectors: - Authority Dimension: Visual hierarchy cues and body language - Intimacy Dimension: Physical proximity and interaction comfort - Care Responsibility: Protective behaviors and attention patterns - Interaction Frequency: Visual evidence of regular interaction - Context Similarity: Shared environments and activities - Temporal Stability: Consistent visual relationship patterns
Avatar System Integration¶
Multimodal understanding enhances avatar responsiveness:
Scene-Aware Avatar Behavior¶
- Environmental Adaptation: Avatar behavior matching visual environment
- Social Mirroring: Appropriate avatar responses to social contexts
- Emotional Synchronization: Avatar expressions matching detected emotions
- Spatial Awareness: Avatar positioning and gaze based on scene understanding
Visual Feedback Loop¶
# Avatar system receives visual context for behavior adaptation
avatar_context = {
"scene_lighting": vision_result.get('lighting_conditions'),
"social_setting": vision_result.get('social_context'),
"user_emotional_state": vision_result.get('emotional_indicators'),
"environmental_mood": vision_result.get('scene_mood')
}
self.bus.publish("avatar.context.visual", avatar_context)
Performance Requirements¶
Latency Targets¶
- Image Analysis: <1 second for companion responsiveness
- Document Processing: <3 seconds for complex OCR tasks
- Video Analysis: <5 seconds for short clips, streaming for longer content
- Context Integration: <200ms for emotion and social context updates
Resource Requirements¶
- Memory Usage: <8GB VRAM for 7B/11B models with quantization
- CPU Requirements: Modern multi-core processor for preprocessing
- Storage: <20GB for model weights and cache
- Bandwidth: Local processing eliminates cloud dependency
Accuracy Targets¶
- Object Detection: >95% accuracy for common objects
- OCR Accuracy: >98% for printed text, >90% for handwriting
- Emotion Detection: >85% accuracy for basic emotional states
- Scene Understanding: >90% contextual accuracy for social situations
Privacy & Security Architecture¶
Local Processing Guarantees¶
- On-Device Inference: All visual analysis happens locally
- No Cloud Dependencies: Complete visual understanding without external APIs
- Encrypted Storage: Visual analysis results encrypted at rest
- Memory Isolation: Visual processing isolated from other system components
Data Protection Measures¶
- Temporary Processing: Images processed in memory, not stored permanently
- Selective Persistence: Only user-approved visual memories stored
- Access Control: Visual data access restricted to authorized components
- Audit Logging: Complete transparency of visual data processing
Privacy-Preserving Features¶
- Federated Learning Ready: Architecture supports privacy-preserving model updates
- Homomorphic Encryption: Support for encrypted inference when needed
- Differential Privacy: Optional noise injection for sensitive visual data
- User Control: Granular control over visual data processing and storage
Deployment Strategy¶
Phase 1: Foundation (Weeks 1-2)¶
- Llama 3.2 Vision 11B Deployment: Primary multimodal service setup
- Basic Integration: Connect with message bus and Conversation Engine
- Image Analysis Pipeline: Core image understanding and captioning
- Emotion Detection: Basic visual emotion recognition
Phase 2: Enhanced Capabilities (Weeks 3-4)¶
- Qwen2.5-VL 7B Integration: Specialized document and precision tasks
- Advanced Emotion Recognition: Facial expression and micro-expression analysis
- Social Context Analysis: Group dynamics and relationship indicators
- Avatar Integration: Visual context for avatar behavior adaptation
Phase 3: Advanced Features (Weeks 5-6)¶
- Video Understanding: Temporal analysis and event detection
- Document Intelligence: Advanced OCR and form processing
- Environmental Awareness: Scene mood and context understanding
- Multi-hop Visual Reasoning: Complex visual relationship understanding
Model Selection Matrix¶
Task-Based Model Routing¶
def select_vision_model(task_type, image_complexity, accuracy_requirements):
"""Route visual tasks to optimal model based on requirements"""
if task_type in ['document_ocr', 'form_parsing', 'multilingual_text']:
return 'qwen2.5-vl' # Superior OCR and structured extraction
elif task_type in ['scene_understanding', 'emotional_context', 'social_analysis']:
return 'llama3.2-vision' # Better contextual and emotional understanding
elif task_type in ['object_counting', 'spatial_reasoning', 'video_analysis']:
return 'qwen2.5-vl' # Precise object detection and temporal analysis
else:
return 'llama3.2-vision' # Default for general companion interactions
Capability Comparison¶
Capability | Llama 3.2 Vision 11B | Qwen2.5-VL 7B | AICO Use Case |
---|---|---|---|
Scene Understanding | ★★★★★ | ★★★☆☆ | Emotional context, social analysis |
OCR/Document Processing | ★★★☆☆ | ★★★★★ | Document assistance, text extraction |
Object Detection | ★★★☆☆ | ★★★★★ | Spatial awareness, object counting |
Emotional Context | ★★★★☆ | ★★★☆☆ | Emotion recognition, mood detection |
Video Understanding | ★★☆☆☆ | ★★★★★ | Temporal analysis, activity recognition |
Multilingual Support | ★★★☆☆ | ★★★★★ | Global companion capabilities |
Local Deployment | ★★★★☆ | ★★★★☆ | Privacy-first processing |
Ecosystem Integration | ★★★★★ | ★★★☆☆ | AICO architecture compatibility |
Companion AI Use Cases¶
Emotional Intelligence Enhancement¶
Visual Emotion Recognition¶
- Facial Expression Analysis: Real-time emotion detection from user images
- Micro-expression Detection: Subtle emotional state changes
- Environmental Mood: Scene atmosphere affecting emotional context
- Social Emotion Cues: Group dynamics and interpersonal emotional indicators
Empathy Calibration¶
# Example: Visual emotion detection for empathy calibration
visual_emotion_context = {
"detected_emotions": ["slight_sadness", "fatigue"],
"confidence_scores": [0.78, 0.65],
"environmental_factors": ["dim_lighting", "cluttered_space"],
"social_context": "alone_in_personal_space"
}
# Emotion simulation receives visual context
self.bus.publish("emotion.recognition.visual", visual_emotion_context)
Social Relationship Understanding¶
Relationship Context Analysis¶
- Group Dynamics: Understanding social hierarchies and interactions
- Intimacy Indicators: Physical proximity and comfort levels
- Authority Relationships: Visual cues about social roles and power dynamics
- Cultural Context: Environmental and cultural relationship indicators
Privacy Boundary Detection¶
- Personal Space Analysis: Understanding appropriate interaction boundaries
- Social Setting Recognition: Formal vs. informal context detection
- Relationship Appropriateness: Visual cues for communication style adaptation
Proactive Companion Behaviors¶
Context-Aware Initiatives¶
- Activity Suggestion: Based on visual environment and mood
- Health Check-ins: Visual wellness indicators and environmental factors
- Social Facilitation: Understanding group dynamics for appropriate participation
- Memory Triggers: Visual cues that connect to stored memories and experiences
Environmental Awareness¶
# Example: Proactive behavior based on visual context
environmental_analysis = {
"scene_type": "home_office",
"activity_indicators": ["computer_screen", "papers", "coffee_cup"],
"mood_indicators": ["organized_space", "natural_light"],
"time_context": "afternoon_work_session"
}
# Autonomous agency receives environmental context
self.bus.publish("vision.environment.analysis", environmental_analysis)
Technical Implementation¶
Model Deployment Architecture¶
class MultimodalService:
def __init__(self, config_manager, message_bus):
self.config = config_manager
self.bus = message_bus
# Initialize both models for different use cases
self.llama_vision = self.load_llama_vision_model()
self.qwen_vision = self.load_qwen_vision_model()
# Performance monitoring
self.performance_tracker = VisionPerformanceTracker()
def load_llama_vision_model(self):
"""Load Llama 3.2 Vision 11B for companion AI tasks"""
return OllamaVisionModel(
model_name="llama3.2-vision:11b",
quantization="q4_k_m", # 8GB VRAM compatible
context_length=32768
)
def load_qwen_vision_model(self):
"""Load Qwen2.5-VL 7B for precision tasks"""
return OllamaVisionModel(
model_name="qwen2.5-vl:7b",
quantization="q4_k_m",
context_length=32768
)
Intelligent Task Routing¶
def route_vision_task(self, image_data, query, context):
"""Intelligently route vision tasks to optimal model"""
task_analysis = self.analyze_task_requirements(query, context)
if task_analysis['requires_precision']:
# Use Qwen2.5-VL for OCR, counting, structured extraction
return self.qwen_vision.process(image_data, query)
elif task_analysis['requires_emotional_understanding']:
# Use Llama 3.2 Vision for companion AI interactions
return self.llama_vision.process(image_data, query)
else:
# Default to Llama 3.2 Vision for general companion use
return self.llama_vision.process(image_data, query)
Integration with AICO Systems¶
Emotion Simulation Integration¶
Visual analysis enhances AppraisalCloudPCT emotion processing:
Visual Appraisal Enhancement¶
- Relevance Assessment: Visual context importance for emotional processing
- Goal Impact Analysis: How visual information affects companion goals
- Coping Evaluation: Visual complexity and emotional processing capability
- Social Appropriateness: Visual context for response regulation
Multi-Modal Emotion Synthesis¶
def integrate_visual_emotion_context(self, visual_analysis, conversation_context):
"""Integrate visual emotion cues with text-based emotion processing"""
enhanced_context = {
"user_emotion_visual": visual_analysis.get('emotional_indicators'),
"environmental_mood": visual_analysis.get('scene_mood'),
"social_context_visual": visual_analysis.get('social_context'),
"conversation_context": conversation_context
}
# Enhanced emotion processing with visual context
return self.emotion_processor.process_with_visual_context(enhanced_context)
Memory System Integration¶
Visual memories enhance AICO's episodic and semantic memory:
Visual Memory Storage¶
- Scene Memories: Important visual contexts and environments
- Emotional Visual Associations: Images connected to emotional experiences
- Relationship Visual Context: Visual patterns in social relationships
- Activity Memories: Visual records of shared activities and experiences
Visual Memory Retrieval¶
# Visual similarity search for memory retrieval
similar_scenes = self.memory_system.find_similar_visual_contexts(
current_image_embedding,
similarity_threshold=0.8,
context_filters=['emotional_state', 'social_setting']
)
Performance Optimization¶
Edge Deployment Optimizations¶
Model Quantization Strategy¶
- 4-bit Quantization: Reduces memory usage by 75% with minimal accuracy loss
- Dynamic Quantization: Runtime optimization based on available resources
- Mixed Precision: FP16/INT8 hybrid for optimal speed-accuracy balance
Inference Acceleration¶
- Batch Processing: Multiple images processed simultaneously when possible
- Caching Strategy: Frequently accessed visual contexts cached locally
- Preprocessing Pipeline: Optimized image preprocessing for faster inference
- Model Switching: Dynamic model selection based on task complexity
Resource Management¶
class VisionResourceManager:
def __init__(self, max_memory_gb=8):
self.max_memory = max_memory_gb
self.current_usage = 0
self.model_cache = {}
def optimize_for_hardware(self, available_vram):
"""Dynamically adjust model configuration based on hardware"""
if available_vram >= 16:
return {"quantization": "fp16", "batch_size": 4}
elif available_vram >= 8:
return {"quantization": "q4_k_m", "batch_size": 2}
else:
return {"quantization": "q4_k_s", "batch_size": 1}
Future Enhancements¶
Advanced Multimodal Capabilities¶
Video Understanding (Phase 4)¶
- Temporal Emotion Tracking: Emotional state changes over video duration
- Activity Recognition: Understanding user activities for proactive suggestions
- Social Interaction Analysis: Group dynamics and conversation patterns
- Memory Formation: Visual episodic memories from video content
3D Scene Understanding (Phase 5)¶
- Spatial Relationship Modeling: 3D understanding of user environment
- Augmented Reality Integration: Overlay digital information on real scenes
- Environmental Intelligence: Smart home and IoT device integration
- Gesture Recognition: Non-verbal communication understanding
Specialized Domain Models¶
Medical Visual Understanding¶
- Health Monitoring: Visual wellness indicators and health tracking
- Medication Recognition: Visual identification of medications and dosages
- Symptom Documentation: Visual evidence for health conversations
Educational Visual Support¶
- Document Analysis: Homework help and educational material understanding
- Concept Visualization: Visual explanation of complex concepts
- Learning Progress: Visual tracking of educational activities
Configuration¶
Multimodal Service Configuration¶
multimodal:
models:
primary:
name: "llama3.2-vision"
size: "11b"
quantization: "q4_k_m"
context_length: 32768
specialized:
name: "qwen2.5-vl"
size: "7b"
quantization: "q4_k_m"
context_length: 32768
processing:
max_image_size: "2048x2048"
batch_size: 2
timeout_seconds: 10
integration:
emotion_enhancement: true
social_context_analysis: true
avatar_integration: true
memory_visual_storage: true
performance:
cache_size_mb: 1024
preprocessing_threads: 4
model_switching_enabled: true
privacy:
local_processing_only: true
temporary_storage_only: true
visual_audit_logging: true
user_consent_required: true
Error Handling & Fallbacks¶
Graceful Degradation¶
- Model Unavailable: Fallback to text-only processing with clear user notification
- Resource Constraints: Automatic quantization and batch size reduction
- Processing Timeout: Return partial results with processing status
- Invalid Input: Clear error messages with suggested input formats
Monitoring & Health Checks¶
- Model Health: Periodic inference tests to validate model availability
- Performance Metrics: Latency, accuracy, and resource usage tracking
- Error Rate Monitoring: Track and alert on processing failures
- User Experience Impact: Correlation with conversation quality metrics